Electrical Formulas

A digital handbook for electrical engineers.

Ohm's Law

V = I × R

V: Voltage (Volts)

I: Current (Amps)

R: Resistance (Ohms)

Power (DC)

P = V × I

P: Power (Watts)

V: Voltage (Volts)

I: Current (Amps)

Power (AC, Single-Phase)

P = V × I × cos(φ)

P: Active Power (Watts)

V: Voltage (Volts)

I: Current (Amps)

cos(φ): Power Factor

Energy

E = P × t

E: Energy (Watt-hours)

P: Power (Watts)

t: Time (hours)

Apparent Power

S = V × I

S: Apparent Power (Volt-Amps)

V: Voltage (Volts)

I: Current (Amps)

Reactive Power

Q = V × I × sin(φ)

Q: Reactive Power (VAR)

V: Voltage (Volts)

I: Current (Amps)

sin(φ): Sine of the angle between V and I

Power Relationship

S² = P² + Q²

S: Apparent Power (VA)

P: Active Power (W)

Q: Reactive Power (VAR)

Impedance

Z = √(R² + (XL – XC)²)

Z: Impedance (Ohms)

R: Resistance (Ohms)

XL: Inductive Reactance (Ohms)

XC: Capacitive Reactance (Ohms)

Voltage Drop (3-Phase)

ΔV = (√3 × I × L × (Rcos(φ) + Xsin(φ))) / 1000

ΔV: Voltage Drop (Volts)

I: Current (Amps)

L: Length (km)

R: Resistance (Ω/km)

X: Reactance (Ω/km)

cos(φ): Power Factor

Current Density

J = I / A

J: Current Density (A/mm²)

I: Current (Amps)

A: Cross-sectional Area (mm²)

Capacitance of Single-Core Cable

C = (2πε) / ln(D/r)

C: Capacitance per unit length (F/m)

ε: Permittivity of the dielectric (F/m)

D: Outer diameter of dielectric

r: Conductor radius

Dielectric Loss

Pd = V²ωC tan(δ)

Pd: Dielectric Loss (W)

V: RMS Voltage (V)

ω: Angular frequency (rad/s)

C: Capacitance (F)

tan(δ): Loss tangent of the dielectric

Skin Depth

δ = √(2 / (ωμσ))

δ: Skin Depth (m)

ω: Angular frequency (rad/s)

μ: Permeability of the conductor (H/m)

σ: Conductivity of the conductor (S/m)

Transformer Turns Ratio

Vp/Vs = Np/Ns

Vp: Primary Voltage

Vs: Secondary Voltage

Np: Primary Turns

Ns: Secondary Turns

Transformer Voltage Regulation

VR = ((IRcos(φ) ± IXsin(φ)) / V) * 100

VR: Voltage Regulation (%)

I: Full load current (A)

R: Equivalent resistance (Ω)

X: Equivalent reactance (Ω)

V: Full load secondary voltage (V)

cos(φ): Power Factor (Lagging +, Leading -)

Synchronous Machine Power

P = (EV / Xs) * sin(δ)

P: Power Output (W)

E: Generated EMF (V)

V: Terminal Voltage (V)

Xs: Synchronous Reactance (Ω)

δ: Load angle

Induction Motor Slip

s = (Ns - Nr) / Ns

s: Slip

Ns: Synchronous Speed (RPM)

Nr: Rotor Speed (RPM)

Slip at Maximum Torque

s_max = R2 / X2

s_max: Slip at maximum torque

R2: Rotor resistance (Ω)

X2: Rotor reactance (Ω)

Per Unit System

Z_pu = Z_actual / Z_base, where Z_base = (V_base)² / S_base

Z_pu: Per-unit impedance

Z_actual: Actual impedance (Ω)

Z_base: Base impedance (Ω)

V_base: Base voltage (V)

S_base: Base apparent power (VA)

Line Efficiency

η = (P_receiving / P_sending) * 100%

η: Efficiency (%)

P_receiving: Power at receiving end (W)

P_sending: Power at sending end (W)

Corona Power Loss (Peek's Formula)

P_c = (241/δ) * (f+25) * √(r/D) * (V-V_c)² * 10⁻⁵

P_c: Corona power loss per km per phase (kW)

f: Frequency (Hz)

δ: Air density correction factor

r: Conductor radius (cm)

D: Spacing between conductors (cm)

V: Phase-to-neutral voltage (kV)

V_c: Critical disruptive voltage (kV)

Sag in Transmission Lines

Sag = wL² / (8T)

Sag: Sag (m)

w: Weight of conductor per unit length (N/m)

L: Span length (m)

T: Tension in the conductor (N)

Symmetrical Components

Ia = I1+I2+I0, Ib = a²I1+aI2+I0, Ic = aI1+a²I2+I0

Ia, Ib, Ic: Phase currents

I0, I1, I2: Zero, positive, and negative sequence currents

a: Phase operator (e^j120°)

Fault Current (3-phase short circuit)

I_sc = E / Z_th

I_sc: Short-circuit current (A)

E: Thevenin equivalent voltage (V)

Z_th: Thevenin equivalent impedance (Ω)

Relay Operating Time (IDMT)

t = 0.14 / ((I/I_set)^0.02 - 1)

t: Operating time (s)

I: Fault current (A)

I_set: Relay pickup current setting (A)

Arc Energy

E = ∫V_arc * I dt

E: Arc Energy (Joules)

V_arc: Arc voltage (V)

I: Arc current (A)

t: Time (s)

Total Harmonic Distortion (THD)

THD = (√(Σ I_n²)) / I_1 * 100 (for n=2 to ∞)

THD: Total Harmonic Distortion (%)

I_n: RMS current of the nth harmonic

I_1: RMS current of the fundamental frequency

Power Factor with Harmonics

PF = P / (V_rms * I_rms)

PF: True Power Factor

P: Average power (W)

V_rms: Total RMS voltage (V)

I_rms: Total RMS current (A)

Flicker Severity (IEC Standard)

P_st = (1/N * Σ (ΔV/V)²) ^ (1/2)

P_st: Short-term flicker severity

N: Number of voltage changes

ΔV/V: Relative voltage change

Swing Equation

(2H/ω_s) * (d²δ/dt²) = P_m - P_e

H: Inertia constant (s)

ω_s: Synchronous speed (rad/s)

δ: Rotor angle (rad)

P_m: Mechanical power input (pu)

P_e: Electrical power output (pu)

Transfer Function (General Form)

G(s) = Output(s) / Input(s)

G(s): Transfer function in the s-domain

Output(s): Laplace transform of the output

Input(s): Laplace transform of the input